M = 998244353; R = [1] def ntt(P): n = k = len(P); P = [*P]; Z = [0]*n while 2*len(R) < n: u = pow(3, M//(4*len(R)), M); R.extend([r*u%M for r in R]) # 3 is a primitive root of M while k > 1: for i in range(n//k): r = R[i] for j in range(i*k, i*k+k//2): z = r*P[j+k//2]; P[j+k//2] = (P[j]-z)%M; P[j] = (P[j]+z)%M k >>= 1 for i in range(1, n): Z[i] = Z[i//2]//2+(i&1)*n//2 return [P[r] for r in Z] def sq(p): m = 2*len(p)-1; n = 1 while n < m: n *= 2 p += [0]*(n-len(p)); t = ntt(p); z = pow(n, -1, M); return ntt([t[-i]**2%M*z%M for i in range(n)])[:m] n = int(input()); A = [0]*n for i in range(1, n): A[i**2%n] += 1 P = sq(A); B = [0]*n; C = [0]*n for i in range(len(P)): B[i%n] += P[i] for i in range(n): B[2*i%n] -= A[i]; C[2*i%n] += A[i] print(sum(A[i]*(B[i]//2+C[i]) for i in range(n)))